Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies.

نویسندگان

  • Gabor Forgacs
  • Stuart A Newman
  • Bernhard Hinner
  • Christian W Maier
  • Erich Sackmann
چکیده

We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition in terms of percolation theory. The viscoelastic parameters (storage modulus G' and loss modulus G") were measured as a function of time for five different frequencies ranging from omega = 0.2 rad/s to 6.9 rad/s. We found that at the gel point both G' and G" obey a scaling law, with the critical exponent Delta = 0.7 and a critical loss angle being independent of frequency as predicted by percolation theory. Gelation of collagen thus represents a second order phase transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Features and Methods of Making Nanofibers by Electrospinning, Phase Separation and Self-assembly

One of the major challenges in the field of tissue engineering is the production of scaffolding in nano-scale. The study of structural-functional connections in pathological and normal tissues with biologically active alternatives or engineered materials has been developed. Extracellular Matrix (ECM) is a suitable environment consisting of gelatin, elastin and collagen types I, II and III, etc....

متن کامل

بررسی اثر کمبود اکسیژن، گذار فاز ساختاری ارتورمبیک‌ - تتراگونال‌ و ساختار نوار انرژی در ترکیب YBa2Cu3O7-& delta

  Obtaining the superconductor samples or mainly, structural phase controlling in 123 systems is a matter of special importance. As decreasing of oxygen in this structure has special effects, and mainly causing structural phase transition, by investigating the structure and thermal analysis of the system, tetragonal-orthorhombic structural phase transition was observed and optimum contents of s...

متن کامل

Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice

Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT). Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury.Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old,...

متن کامل

GCMC Glauber dynamics study for structural transitions in YBCOx (0<x<1), HTc system

We have chosen an Ising ASYNNNI (ASYmmetric Next Nearest Neighbor Interaction)   model under a grand canonical regime to investigate structural phase transition from a high symmetric tetragonal (Tet) to a low symmetric orthorhombic in YBa2Cu3O6+x , 0<x<1,  HTc system. Ordering process for absorbed oxygens from an external gas bath into the basal plane of the layered system is studied by Monte C...

متن کامل

اثر پماد عصاره برگ گیاه مورد برروند ترمیم زخم در رت های نژاد ویستار

  Introduction: Wound healing is the process of skin repair after injury. Myrtus herb has antibacterial and anti-inflammatory effects. In this study, wound healing activity of methanol extract of Myrtus Communis leave extract cream in Wistar rats was investigated.   Methods: In this experimental study, 10% extract of Myrtus Communis was prepared in Paraffin oil. A full thickness wound in the do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 84 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003